organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Ethoxy-6-[(methylimino)methyl]phenol

Cheng Min Ge, Shu-Hua Zhang,* Feng Chao, Yin Guang Wang and Wei Li

College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China Correspondence e-mail: zsh720108@163.com

Received 9 May 2010; accepted 26 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.085; wR factor = 0.277; data-to-parameter ratio = 13.2.

In the title compound, $C_{10}H_{13}NO_2$, synthesized by the reaction of 2-hydroxy-3-ethoxybenzaldehyde with methylamine, there is an an intramolecular $O-H\cdots N$ hydrogen bond involving the hydroxy substituent and the amino N atom. In the crystal, molecules form inversion dimers connected by pairs of C- $H\cdots O$ hydrogen bonds.

Related literature

For similar Schiff bases, see: Chatziefthimiou *et al.* (2006); Zhang *et al.* (2003); Kargar *et al.* (2010). For related structures, see: Karadayı *et al.* (2003); Che *et al.* (2002); Jia *et al.* (2009); Fun *et al.* (2009). For structures with similar hydrogen-bonding to the title compound, see: Wang *et al.* (2010); Kargar *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{13}NO_2\\ M_r = 179.21\\ Monoclinic, P2_1/c\\ a = 9.2986 \ (19) \ {\rm \AA}\\ b = 14.713 \ (3) \ {\rm \AA}\\ c = 7.0551 \ (15) \ {\rm \AA}\\ \beta = 108.465 \ (8)^\circ \end{array}$

 $V = 915.5 (3) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.09 \text{ mm}^{-1}\) T = 296 K 0.23 \times 0.18 \times 0.15 \text{ mm}\)

Data collection

Bruker SMART CCD area-detector	1611 independent reflections
diffractometer	1338 reflections with $I > 2\sigma(I)$
5022 measured reflections	$R_{\rm int} = 0.028$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.085$	122 parameters
$wR(F^2) = 0.277$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$
1611 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots N1$ $C10 - H10B \cdots O1^{i}$	0.82 0.96	1.92 1.98	2.616 (4) 2.782 (4)	142 140

Symmetry code: (i) -x, -y, -z + 1.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support by the Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No.0842003–25), the Young Science Foundation of Guangxi Province of China (No. 0832085) and the start-up foundation for doctoral students of Guilin University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2178).

References

Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.

- Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, pp. 23701–23709.
- Che, C.-M., Kwong, H.-L., Chu, W.-C., Cheung, K.-F., Lee, W.-S., Yu, H.-S., Yeung, C.-T. & Cheung, K.-K. (2002). *Eur. J. Inorg. Chem.* pp. 1456–1463.
- Fun, H.-K., Kia, R., Kargar, H. & Jamshidvand, A. (2009). Acta Cryst. E65, 0722-0723.
- Jia, Z. (2009). Acta Cryst. E65, 0646.
- Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, 0851–0853.
- Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). *Acta Cryst.* E66, 0728.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. F., Zhang, S.-H., Chen, Z. F. & Liang, H. (2010). Acta Cryst. E66, 0990.
- Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). *Chin. J. Inorg. Chem.* **19**, 517–520.

supplementary materials

Acta Cryst. (2010). E66, o1526 [doi:10.1107/S1600536810019951]

2-Ethoxy-6-[(methylimino)methyl]phenol

C. M. Ge, S.-H. Zhang, F. Chao, Y. G. Wang and W. Li

Comment

Schiff base compounds (Zhang *et al.*, 2003; Karadayı *et al.*, 2003; Che *et al.*, 2002; Fun *et al.*, 2009; Jia *et al.*, 2009; Wang *et al.*, 2010) have aroused increasing interest because of their antiviral, anticancer and antibacterial activities. Herein, we report the synthesis and crystal structure of the new title Schiff base compound, prepared by the reaction of 2-hydrogen-3-ethoxy-benzaldehyde and methylamine.

The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are similar to those found in the methoxy analogue (Chatziefthimiou *et al.*, 2006). Excluding the methyl groups (C8 and C10), all the other non-hydrogen atoms (O1/O2/N1/C1-C7/C9) lie in a plane (planar to within 0.054 (3)Å). There is an intramolecular O–H…N hydrogen bond between the phenol and imido-group (Table 1), similar to the situation in crystal structures of the methoxy analogue (Chatziefthimiou *et al.*, 2006), 6-Acetoxymethyl-3-[(2-hydroxy-3-methoxybenzylidene)-amino]-3, 4,5,6-tetrahydro-2*H*-pyran-2,4,5-triyl triacetate (Wang *et al.*, 2010) and 5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]diphenol (Kargar *et al.*, 2010).

In the crystal molecules are linked through weak intermolecular C–H···O hydrogen bond, to form dimers centered about an inversion center (Fig. 2).

Experimental

Compound 2-hydrogen-3-ethoxy-benzaldehyde (0.166 g, 1 mmol) was dissolved in ethanol (15 ml). To this solution was added a methylamine solution (0.5 ml) and the mixture was stirred and refluxed at 323 K for 2 h. After cooling to room temperature and filtration, the filtrate was left to stand at room temperature. Yellow block-like crystals, suitable for X-ray diffraction analysis, were obtained in a yield of 76 %. Analysis found (%): C 66.97, H 7.38, N 7.84; C₁₀H₁₃NO₂ requires (%): C 67.02, H 7.31, N 7.82.

Refinement

All the H-atoms were positioned geometrically and were treated as riding atoms: O—H 0.82 Å, C—H 0.93–0.97 Å, with $U_{iso}(H) = k \times U_{ea}(\text{parent O or C-atom})$, where k = 1.2 for H-aromatic and = 1.5 for H-methyl and H-hydroxyl.

Figures

Fig. 1. The molecular structure of the title molecule, showing 30 % probability displacement ellipsoids. The intramolecular O-H…N hydrogen bond is shown as a dashed red line.

Fig. 2. A view along the c-axis of the crystal packing of the title compound. The O-H…N and C-H…O hydrogen bonds are shown as dashed lines.

2-Ethoxy-6-[(methylimino)methyl]phenol

C ₁₀ H ₁₃ NO ₂	F(000) = 384
$M_r = 179.21$	$D_{\rm x} = 1.300 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1611 reflections
a = 9.2986 (19) Å	$\theta = 2.3 - 25.0^{\circ}$
b = 14.713 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 7.0551 (15) Å	T = 296 K
$\beta = 108.465 \ (8)^{\circ}$	Block, yellow
V = 915.5 (3) Å ³	$0.23\times0.18\times0.15~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	1338 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$
phi and ω scans	$h = -10 \rightarrow 11$
5022 measured reflections	$k = -17 \rightarrow 17$
1611 independent reflections	$l = -8 \rightarrow 6$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.085$	H-atom parameters constrained
$wR(F^2) = 0.277$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1633P)^{2} + 1.1252P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.002$
1611 reflections	$\Delta \rho_{max} = 0.86 \text{ e } \text{\AA}^{-3}$
122 parameters	$\Delta \rho_{min} = -0.58 \text{ e} \text{ Å}^{-3}$

0 restraints

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.024 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0203 (4)	0.1015 (2)	0.8638 (5)	0.0465 (9)
C2	-0.1745 (4)	0.0879 (2)	0.8267 (5)	0.0477 (9)
C3	-0.2406 (4)	0.1178 (3)	0.9696 (6)	0.0592 (10)
H3	-0.3434	0.1084	0.9482	0.071*
C4	-0.1544 (5)	0.1603 (3)	1.1393 (6)	0.0654 (11)
H4	-0.2000	0.1813	1.2308	0.078*
C5	0.0000 (5)	0.1728 (3)	1.1776 (6)	0.0578 (10)
Н5	0.0577	0.2010	1.2952	0.069*
C6	0.0682 (4)	0.1432 (2)	1.0401 (5)	0.0481 (9)
C7	0.3157 (4)	0.1927 (3)	1.2361 (6)	0.0579 (10)
H7A	0.3057	0.1632	1.3542	0.069*
H7B	0.2889	0.2563	1.2391	0.069*
C8	0.4756 (5)	0.1841 (4)	1.2314 (7)	0.0727 (12)
H8A	0.4942	0.1223	1.2015	0.109*
H8B	0.5451	0.2007	1.3592	0.109*
H8C	0.4897	0.2236	1.1304	0.109*
С9	-0.2684 (4)	0.0421 (3)	0.6471 (5)	0.0535 (9)
Н9	-0.3714	0.0343	0.6271	0.064*
C10	-0.3148 (3)	-0.0314 (2)	0.3564 (4)	0.0407 (8)
H10A	-0.3663	-0.0781	0.4052	0.061*
H10B	-0.2616	-0.0583	0.2741	0.061*
H10C	-0.3875	0.0116	0.2792	0.061*
N1	-0.2115 (3)	0.0129 (2)	0.5180 (5)	0.0556 (9)
01	0.0527 (3)	0.0762 (2)	0.7326 (4)	0.0612 (9)
H1	-0.0096	0.0596	0.6275	0.092*
O2	0.2187 (3)	0.15026 (19)	1.0599 (4)	0.0590 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0514 (19)	0.0426 (17)	0.0509 (19)	0.0052 (14)	0.0240 (15)	0.0028 (14)
C2	0.0478 (19)	0.0433 (17)	0.054 (2)	0.0058 (14)	0.0193 (15)	0.0042 (14)
C3	0.052 (2)	0.063 (2)	0.070 (2)	0.0072 (17)	0.0295 (18)	-0.0009 (19)
C4	0.065 (2)	0.075 (3)	0.067 (2)	0.0070 (19)	0.036 (2)	-0.013 (2)
C5	0.063 (2)	0.058 (2)	0.057 (2)	0.0007 (17)	0.0261 (18)	-0.0085 (17)
C6	0.0512 (19)	0.0442 (17)	0.0526 (19)	0.0023 (14)	0.0215 (16)	-0.0013 (14)
C7	0.057 (2)	0.061 (2)	0.056 (2)	-0.0070 (17)	0.0180 (17)	-0.0089 (17)
C8	0.055 (2)	0.091 (3)	0.070 (3)	-0.003 (2)	0.018 (2)	-0.005 (2)
C9	0.0439 (18)	0.059 (2)	0.058 (2)	0.0032 (15)	0.0174 (16)	0.0038 (17)
C10	0.0279 (14)	0.0597 (19)	0.0317 (15)	-0.0057 (12)	0.0057 (11)	-0.0128 (13)
N1	0.0500 (17)	0.0607 (19)	0.0542 (18)	-0.0019 (13)	0.0140 (15)	-0.0045 (14)
01	0.0486 (15)	0.0812 (19)	0.0581 (16)	-0.0025 (13)	0.0229 (12)	-0.0191 (13)
O2	0.0493 (15)	0.0723 (17)	0.0597 (16)	-0.0071 (12)	0.0233 (12)	-0.0153 (12)
Geometric par	rameters (Å, °)					
C101		1.362 (4)	С7—	C8	1.50	03 (6)
C1—C2		1.388 (5)	С7—	H7A	0.9	700
C1—C6		1.398 (5)	С7—	H7B	0.9	700
C2—C3		1.406 (5)	C8—	H8A	0.90	500
С2—С9		1.457 (5)	C8—	H8B	0.90	500
C3—C4		1.364 (6)	C8—	H8C	0.90	500
С3—Н3		0.9300	С9—	N1	1.20	64 (5)
C4—C5		1.387 (6)	С9—	Н9	0.93	300
C4—H4		0.9300	C10-	-N1	1.39	98 (4)
C5—C6		1.386 (5)	C10–	-H10A	0.90	500
С5—Н5		0.9300	C10–	-H10B	0.90	500
C6—O2		1.366 (4)	C10–	-H10C	0.90	500
С7—О2		1.428 (4)	01—	H1	0.82	200
01—C1—C2		122.7 (3)	02—	С7—Н7В	110	.2
O1—C1—C6		116.4 (3)	C8—	С7—Н7В	110	.2
C2—C1—C6		120.8 (3)	H7A-	—С7—Н7В	108	.5
C1—C2—C3		118.7 (3)	С7—	C8—H8A	109	.5
C1—C2—C9		121.9 (3)	С7—	C8—H8B	109	.5
С3—С2—С9		119.4 (3)	H8A-	—С8—Н8В	109	.5
C4—C3—C2		120.3 (3)	С7—	С8—Н8С	109	.5
С4—С3—Н3		119.9	H8A-	—С8—Н8С	109	.5
С2—С3—Н3		119.9	H8B-	—С8—Н8С	109	.5
C3—C4—C5		121.1 (3)	N1—	С9—С2	120	.8 (3)
C3—C4—H4		119.5	N1—	С9—Н9	119	.6
C5—C4—H4		119.5	C2—	С9—Н9	119	.6
C6—C5—C4		119.8 (4)	N1—	C10—H10A	109	.5
С6—С5—Н5		120.1	N1—	C10—H10B	109	.5
С4—С5—Н5		120.1	H10A	—С10—Н10В	109	.5

supplementary materials

140

2.782 (4)

02C6C5	125.8 (3)	N1—C10—H10C		109.5
02C6C1	114.8 (3)	H10A—C10—H10C		109.5
C5C6C1	119.3 (3)	H10B—C10—H10C		109.5
02C7C8	107.5 (3)	C9—N1—C10		114.2 (3)
C2—C7—H7A C8—C7—H7A <i>Hydrogen-bond geometry (Å, °)</i>	110.2	C6—02—C7		117.8 (3)
<i>D</i> —H… <i>A</i>	<i>D</i> —Н	H…A	<i>D</i> … <i>A</i>	<i>D</i> —Н··· <i>А</i>
O1—H1…N1	0.82	1.92	2.616 (4)	142

1.98

0.96

C10—H10B…O1ⁱ

Symmetry codes: (i) -x, -y, -z+1.

